Positive Crosstalk of MAMP Signaling Pathways in Rice Cells
نویسندگان
چکیده
Plants have evolved efficient defense mechanisms known as priming and synergy, both of which can mobilize defense responses more extensively against successive pathogen invasion or simultaneous stimulation by different signal molecules. However, the mechanisms underlying these phenomena were largely unknown. In the present study, we used cultured rice cells and combination of purified MAMP molecules as a model system to study the mechanisms of these phenomena. We found that the pretreatment of rice cells with a low concentration of bacterial lipopolysaccharide (LPS) apparently primed the defense responses induced by successive N-acetylchitooctaose (GN8) treatment. On the other hand, simultaneous treatment with GN8 and LPS also resulted in the similar enhancement of defense responses observed for the LPS-induced priming, indicating that the synergistic effects of these MAMPs are basically responsible for such enhancement of defense responses, though the effect could be interpreted as "priming" under some experimental conditions. These results also indicate that such a positive crosstalk of signaling cascade downstream of MAMP receptors seems to occur very rapidly, probably at early step(s) of signaling pathway. Comprehensive analysis of phytohormones revealed a specific enhancement of the synthesis of jasmonic acid (JA), both in the LPS pretreatment and also simultaneous treatment, indicating a role of JA in the enhancement of downstream responses.
منابع مشابه
Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice
Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techn...
متن کاملEffects of resveratrol on crosstalk between canonical β-catenin/Wnt and FOXO pathways in coronary artery disease patients with metabolic syndrome: a case control study
Background: Coronary artery disease (CAD) is the major cause of mortality and morbidity worldwide. The aim of this study was to explore the effect of resveratrol (RES) on Canonical β-catenin/Wnt and forkhead box O (FOXO) pathways in CAD patients.Method: We performed this study on 10 metabolic syndrome patients with three-vessel CAD and 10 sex-aged matched healthy subjects. The effects of RES on...
متن کاملEffects of resveratrol on crosstalk between canonical β-catenin/Wnt and FOXO pathways in coronary artery disease patients with metabolic syndrome: a case control study
Background: Coronary artery disease (CAD) is the major cause of mortality and morbidity worldwide. The aim of this study was to explore the effect of resveratrol (RES) on Canonical β-catenin/Wnt and forkhead box O (FOXO) pathways in CAD patients.Method: We performed this study on 10 metabolic syndrome patients with three-vessel CAD and 10 sex-aged matched healthy subjects. The effects of RES on...
متن کاملCrosstalk of arabinogalactan protein, auxin, gibberellin, and callose in Al-treated Tea seedlings
Arabinogalactan proteins (AGP) are a class of cell surface plant peptidoglycans which have been implicated in root elongation and signal transduction pathways. AGPs function not only as markers of cellular identity but also as signaling molecules, which might initiate signal transduction. Aluminum promotes the elongation of tea (Camellia sinensis L.) roots. Although some mechanisms by which Al ...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کامل